Quick Exam Notes – De Broglie Wavelength
  • In terms of momentum: \( \lambda = \frac{h}{p} \)
  • In terms of velocity: \( \lambda = \frac{h}{mv} \)
  • For electrons accelerated by voltage V: \( \lambda = \frac{h}{\sqrt{2meV}} = \frac{12.26}{\sqrt{V}} \text{Å} \)
  • In terms of energy (E): \( \lambda = \frac{h}{\sqrt{2mE}} \)
1. An electron is moving under a potential of 150 V. Calculate the wavelength of the electron waves?

When an electron is accelerated through a potential difference \( V \), its kinetic energy is:

\[ KE = eV \]

Given:

  • Potential difference: \( V = 150 \) V

Using the de Broglie equation:

\[ \lambda = \frac{12.26}{\sqrt{V}} Å \]

\[ \lambda = \frac{12.26}{\sqrt{150}} Å \]

\[ \lambda = \frac{12.26}{12.24} Å \]

\[ \lambda = 1.001 Å \]

  • de Broglie wavelength of the electron: \( 1 Å \)
2. Compare the energy of photon with that of a neutron when both are associated with wavelength of 1Å, given that mass of neutron is 1.67x10-27 kg.

Energy of a Photon

The energy of a photon is given by the equation:

\[ E_p = \frac{hc}{\lambda} \]

where:

  • \( h = 6.626 \times 10^{-34} \) Js (Planck's constant)
  • \( c = 3.0 \times 10^8 \) m/s (Speed of light)
  • \( \lambda = 1 Å = 10^{-10} \) m

Substituting the values:

\[ E_p = \frac{(6.626 \times 10^{-34}) (3.0 \times 10^8)}{10^{-10}} \] \[ E_p = 19.878 \times 10^{-16} \text{ J} \]

Energy of a Neutron

The energy of a neutron (de Broglie relation) is given by:

\[ E_n = \frac{p^2}{2m}, \quad \text{where} \quad p = \frac{h}{\lambda} \]

Substituting \( p \) into the equation:

\[ E_n = \frac{(h/\lambda)^2}{2m} \]

Given:

  • \( m = 1.67 \times 10^{-27} \) kg
  • \( \lambda = 10^{-10} \) m

Substituting values:

\[ E_n = \frac{(6.626 \times 10^{-34})^2}{2 (1.67 \times 10^{-27}) (10^{-10})^2} \] \[ E_n = 13.144 \times 10^{-21} \text{ J} \]

Step 3: Compare the Energies

Taking the ratio:

\[ \frac{E_p}{E_n} = \frac{19.878 \times 10^{-16}}{13.144 \times 10^{-21}} \] \[ \frac{E_p}{E_n} \approx 1.512 \times 10^5 \]

Conclusion:

The energy of a photon is approximately \( 1.512 \times 10^5 \) times greater than the energy of a neutron when both have the same wavelength of 1Å.

3. An electron and proton are both accelerated through the same potential difference V. Compare their de Broglie wavelengths.

For an electron:

\[ \lambda_e = \frac{h}{\sqrt{2m_e eV}} \]

For a proton:

\[ \lambda_p = \frac{h}{\sqrt{2m_p eV}} \]

Taking the ratio of the two wavelengths:

\[ \frac{\lambda_e}{\lambda_p} = \frac{\sqrt{m_p}}{\sqrt{m_e}} \]

Given:

  • Mass of proton: \( m_p = 1.673 \times 10^{-27} \) kg
  • Mass of electron: \( m_e = 9.109 \times 10^{-31} \) kg

\[ \frac{\lambda_e}{\lambda_p} = \sqrt{\frac{1.673 \times 10^{-27}}{9.109 \times 10^{-31}}} \]

\[ \frac{\lambda_e}{\lambda_p} = \sqrt{1836} \]

\[ \frac{\lambda_e}{\lambda_p} \approx 42.85 \]

The electron has a de Broglie wavelength approximately 43 times larger than that of the proton when accelerated through the same potential difference \( V \).

4. What is the K.E of an electron whose de-Broglie wavelength is 5000 ˚A?

The de Broglie wavelength equation is:

\[ \lambda = \frac{h}{p} \]

where \( \lambda = 5000 \) Å \( = 5.0 \times 10^{-7} \) m, and \( h = 6.626 \times 10^{-34} \) J·s.

Momentum in Terms of Wavelength

\[ p = \frac{h}{\lambda} \]

\[ p = \frac{6.626 \times 10^{-34}}{5.0 \times 10^{-7}} \]

\[ p = 1.325 \times 10^{-27} \text{ kg·m/s} \]

The kinetic energy formula is:

\[ KE = \frac{p^2}{2m} \]

where \( m_e = 9.109 \times 10^{-31} \) kg.

\[ KE = \frac{(1.325 \times 10^{-27})^2}{2 \times (9.109 \times 10^{-31})} \]

\[ KE = \frac{1.756 \times 10^{-54}}{1.822 \times 10^{-30}} \]

\[ KE = 9.64 \times 10^{-25} \text{ J} \]

Convert to Electron Volts (eV)

Since \( 1 eV = 1.602 \times 10^{-19} \) J:

\[ KE = \frac{9.64 \times 10^{-25}}{1.602 \times 10^{-19}} \]

\[ KE \approx 6.02 \times 10^{-6} \text{ eV} \]

  • Kinetic energy of the electron:\( 6.02 \mu eV \) (micro electron volts)
5. Find the energy of the neutron in units of electron volt whose de-Broglie wavelength is 1˚A?

The de Broglie wavelength is related to momentum by: \[ \lambda = \frac{h}{p} \] where \( \lambda = 1 \, \text{Å} = 1 \times 10^{-10} \, \text{m} \) and \( h = 6.626 \times 10^{-34} \, \text{J·s} \).

The momentum of the neutron is: \[ p = \frac{h}{\lambda} = \frac{6.626 \times 10^{-34}}{1 \times 10^{-10}} = 6.626 \times 10^{-24} \, \text{kg·m/s} \]

The kinetic energy of the neutron is given by: \[ K.E. = \frac{p^2}{2m}\] where \( m = 1.675 \times 10^{-27} \, \text{kg} \).

Substituting the values: \[ K.E. = \frac{(6.626 \times 10^{-24})^2}{2 \times 1.675 \times 10^{-27}} \approx 1.309 \times 10^{-22} \, \text{J} \]

Finally, converting the energy to electron volts: \[ K.E. = \frac{1.309 \times 10^{-22}}{1.602 \times 10^{-19}} \approx 0.082 \, \text{eV} \]

Summary

Problems on the De-Broglie Hypothesis help students apply wave-particle duality to real-world cases of electrons, protons, and neutrons. By practicing numerical examples, learners understand how to calculate De-Broglie wavelength using kinetic energy, momentum, and potential difference.