Quick Exam Notes
  • Distribution Function: \( f(E) = \frac{1}{1 + e^{(E - E_f)/kT}} \) gives probability of an electron occupying energy level \(E\).
  • Case 1: 2% above \(E_f\)
    Energy \(E=E_f+0.02\,E_f\Rightarrow E-E_f=0.02E_f\). \( \displaystyle f=\frac{1}{1+e^{E-E_f/kT}}=\frac{1}{1+e^{0.02E_f/kT}} \) Use when a question states “energy 2% above the Fermi energy”.
  • Case 2: \(0.5\,\text{eV}\) above \(E_f\)
    Energy \( E=E_f+0.5eV\,\Rightarrow E-E_f=0.5 eV \Rightarrow \displaystyle f=\frac{1}{1+e^{0.5/(kT)}} \). At \(T=300\,\text{K}\), \(kT\approx 0.0259\,\text{eV}\) ⇒ \( f\approx \frac{1}{1+e^{19.3}}\approx 4\times10^{-9} \) (nearly zero).
  • Case 3: \(kT\) above \(E_f\)
    Energy \( E=E_f+kT \Rightarrow E-E_f = kT \displaystyle f=\frac{1}{1+e}\approx 0.268 \).
  • Constants: \(k=8.617\times10^{-5}\ \text{eV/K}\), so \(kT\approx 0.0259\,\text{eV}\) at \(300\,\text{K}\).

1. At what temperature we can expect a 15% probability that electrons in silver have an energy which is 2% of Fermi energy and above the Fermi energy? The Fermi energy of silver is 5.5 eV.

Solution: \( E_F = 5.5 \, \text{eV} = 5.5 \times 1.6 \times 10^{-19} \, \text{J} \), electron occupation probability, \( F(E) = 0.15 \),

Energy level, \( E = E_F + 2\% \, \text{of} \, E_F = E_F + 0.02 \, E_F = 1.02 \, E_F \), so, \( E - E_F = 0.02 \, E_F \).

Find Temperature \( T = ? \)

The electron occupation probability is given by

\[ F(E) = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}} \]

\[\Rightarrow F(E) = \frac{1}{1 + e^{\frac{0.02 \times E_F}{k_B T}}} = \frac{1}{1 + e^{\frac{0.02 \times 5.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times T}}} \]

\[ \Rightarrow 0.15 = \frac{1}{1 + e^{\frac{0.02 \times 5.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times T}}} \]

\[ \Rightarrow 1 + e^{\frac{0.02 \times 5.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times T}} = \frac{1}{0.15} = 6.666 \]

\[ \Rightarrow e^{\frac{0.02 \times 5.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times T}} = 5.666 \]

\[ \Rightarrow \frac{0.02 \times 5.5 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23} \times T} = \ln(5.666) = 1.7334 \]

\[ \Rightarrow \frac{1275.362}{T} = 1.7334 \]

\[ \Rightarrow T = \frac{1275.362}{1.7334} = 735.75 \, \text{K} \]

The temperature is \( 735.75 \, \text{K} \).

2. At what temperature there is 1% probability in an energy level having energy 0.5 eV above Fermi energy.

Solution:

Energy level, \( E = E_F + 0.5 \, \text{eV}; E - E_F = 0.5 \, \text{eV} \times 1.602 \times 10^{-19} = 8.01 \times 10^{-20} \, \text{J} \)

Electron occupation probability, \( f(E) = 0.01 \, (1\%) \).

The electron occupation probability is given by

\[ f(E) = \frac{1}{1 + e^{(E - E_F)/kT}} \] \[ 0.01 = \frac{1}{1 + e^{(8.01 \times 10^{-20})/kT}} \] \[ \frac{1}{0.01} = 1 + e^{(8.01 \times 10^{-20})/kT} \] \[ 100 = 1 + e^{(8.01 \times 10^{-20})/kT} \] \[ e^{(8.01 \times 10^{-20})/kT} = 99 \] \[ \frac{8.01 \times 10^{-20}}{kT} = \ln(99) \] \[ \ln(99) \approx 4.595 \] \[ \frac{8.01 \times 10^{-20}}{kT} = 4.595 \] \[ kT = \frac{8.01 \times 10^{-20}}{4.595} \approx 1.743 \times 10^{-20} \, \text{J} \]

Substitute \( k = 1.38 \times 10^{-23} \, \text{J/K} \):

\[ T = \frac{1.743 \times 10^{-20}}{1.38 \times 10^{-23}} \approx 1263 \, \text{K} \]

The temperature is approximately 1263 K.

3. Evaluate the Fermi function for an energy kT above the Fermi level.

Solution:The Fermi function is given by:

\[ f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)} \]

For an energy \( E = E_F + kT \), calculate the Fermi function.

Substitute \( E = E_F + kT \) into the Fermi function:

\[ f(E) = \frac{1}{1 + \exp\left(\frac{(E_F + kT) - E_F}{kT}\right)} \]

Simplify the exponent:

\[ f(E) = \frac{1}{1 + \exp(1)} = \frac{1}{1 + e} \]

Since \( e \approx 2.718 \), we have:

\[ f(E) = \frac{1}{1 + 2.718} = \frac{1}{3.718} \]

\[ f(E) = 0.269 \]

The value of the Fermi function for an energy \( kT \) above the Fermi level is approximately \( 0.269 \).

For a comprehensive understanding, refer to a article on Fermi-Dirac Function.

MCQs on Fermi–Dirac Distribution Problems


  1. The probability of electron occupancy at the Fermi level (\(E = E_f\)) at any finite temperature is:
    • a) 0
    • b) 0.25
    • c) 0.5
    • d) 1
    Answer

    c) 0.5

  2. At \(T = 0 \,K\), the Fermi–Dirac distribution shows:
    • a) All states are partially filled
    • b) States below \(E_f\) filled, above \(E_f\) empty
    • c) Random filling of states
    • d) All states empty
    Answer

    b) States below \(E_f\) filled, above \(E_f\) empty

  3. At room temperature (\(T \approx 300K\)), \(kT\) is approximately:
    • a) 0.86 eV
    • b) 0.0259 eV
    • c) 8.62 eV
    • d) 1 eV
    Answer

    b) 0.0259 eV

  4. For energy \(E = E_f + kT\), the occupancy probability is:
    • a) 0.5
    • b) 0.268
    • c) 0.73
    • d) 0.9
    Answer

    b) 0.268

  5. The probability of finding an electron 0.5 eV above the Fermi level at 300 K is approximately:
    • a) 0.5
    • b) 0.27
    • c) \(4 \times 10^{-9}\)
    • d) 1
    Answer

    c) \(4 \times 10^{-9}\)