Let dp is the number of holes in energy interval E and E+dE in valence band,
\[ dp = (1-F(E)) Z(E)dE \tag{1} \]
Figure 1. Energy band diagram of intrinsic semiconductor
Where Z(E) is the density of states in E and E+dE interval, f(E) is the Fermi distribution function. As f(E) is probability of electron occupancy, so the hole occupancy will be given by 1-f(E)
\[ f(E) = \frac{1}{1+\exp \left ( \frac{E-E_F}{kT} \right )} \tag{2} \] \[ 1-f(E) = \frac{1+\exp \left ( \frac{E-E_F}{kT} \right )-1}{1+\exp \left ( \frac{E-E_F}{kT} \right )} \tag{3} \]In valance band E < Ef , so the exponential terms in denominator can be neglected as compared to unity
\[ 1-f(E) = \exp \left ( \frac{E-E_F}{kT} \right) \tag{4} \]The expression of density of states is given by,
\[ Z(E) dE = \frac{4\pi}{h^3} (2m_h^*)^{3/2} E^{1/2} dE \tag{5}\] \[ Z(E) dE = \frac{4\pi}{h^3} (2m_h^*)^{3/2} (E_v-E)^{1/2} dE \tag{6}\]Now, the number of holes in valence band,
\[ p = \int_{-\infty}^{E_v} Z(E) (1-f(E)) dE \tag{7} \]Substituting Eqn 6 & 4 in Eqn 7,
\[ p = \int_{-\infty}^{E_v} \frac{4\pi}{h^3} (2m_h^*)^{3/2} (E_v-E)^{1/2} \exp \left (\frac{E-E_F}{kT} \right ) dE \tag{8} \] \[ p = \frac{4\pi}{h^3} (2m_h^*)^{3/2} \exp\left(\frac{-E_f}{kT}\right) \int_{-\infty}^{E_v} (E_v-E)^{1/2} \exp \left (\frac{E}{kT} \right ) dE \tag{9} \]Let us assume,
Ev - E = x ⇒ dE = -dx
As E → Ev⇒ x→0
As E → - ∞ x→∞
Now the Eqn 9 becomes,
\[ p = \frac{4\pi}{h^3} (2m_h^*)^{3/2} \exp\left(\frac{-E_f}{kT}\right) \int_{\infty}^{0} (x)^{1/2} \exp \left (\frac{E_v-x}{kT} \right ) -dx \tag{10} \] \[ p = \frac{4\pi}{h^3} (2m_h^*)^{3/2} \exp\left(\frac{E_v-E_f}{kT}\right) \int_{0}^{\infty} (x)^{1/2} \exp \left (\frac{-x}{kT} \right ) dx \tag{11} \]Using gamma function,
\[\int_{0}^{\infty} x^{1/2} \exp\left(\frac{-x}{kT}\right) dx = (kT)^{3/2} \frac{\sqrt{\pi}}{2}\] \[ p = \frac{4\pi}{h^3} (2m_h^*)^{3/2} \exp\left(\frac{E_v-E_f}{kT}\right) (kT)^{3/2} \frac{\sqrt{\pi}}{2} \tag{11} \] \[ p = 2 \times \left( \frac{ 2\pi m_h^*kT}{h^2} \right )^{3/2} \exp\left(\frac{E_v-E_f}{kT}\right) \tag{11} \]The above equation can be written in simplified form as
\[ p = N_v \exp\left(\frac{E_v-E_f}{kT}\right) \tag{11} \] Where \[ N_v = 2 \times \left( \frac{ 2\pi m_h^*kT}{h^2} \right )^{3/2} \]In intrinsic semiconductors, n = p = ni. Using law of mass action, value of intrinsic carrier concentration can be calculated as,
\[ n_i^2 = n \times p \] \[ n_i = \sqrt{N_cN_v} \exp \left( \frac{-E_g}{2kT} \right)\]